Skip to content

Supported Mathematical Notation

This page documents the LaTeX mathematical notation supported in our documentation and provides examples of quantum computing mathematical expressions.

Dirac Notation

Ket vectors (quantum states):

\[|\psi\rangle = \alpha|0\rangle + \beta|1\rangle\]

Bra vectors (complex conjugate transpose):

\[\langle\psi| = \alpha^*\langle 0| + \beta^*\langle 1|\]

Inner products (probability amplitudes):

\[\langle\phi|\psi\rangle = \sum_i \phi_i^* \psi_i\]

Outer products (projection operators):

\[|\psi\rangle\langle\phi| = \begin{pmatrix} \psi_0 \phi_0^* & \psi_0 \phi_1^* \\ \psi_1 \phi_0^* & \psi_1 \phi_1^* \end{pmatrix}\]

Common Quantum States

Computational basis states:

\[|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}\]

Superposition states:

\[|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix}\]
\[|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -1 \end{pmatrix}\]

Multi-Qubit Notation

Tensor product:

\[|00\rangle = |0\rangle \otimes |0\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}\]

Bell states (maximally entangled):

\[|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)\]
\[|\Phi^-\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)\]
\[|\Psi^+\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)\]
\[|\Psi^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)\]

Operators and Matrices

Pauli matrices:

\[\sigma_x = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\]
\[\sigma_y = Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\]
\[\sigma_z = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\]

Hadamard gate:

\[H = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\]

CNOT gate (controlled-X):

\[\text{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}\]

Probability and Measurement

Born rule (measurement probability):

\[P(|i\rangle) = |\langle i|\psi\rangle|^2\]

Normalization condition:

\[\langle\psi|\psi\rangle = \sum_i |\alpha_i|^2 = 1\]

Expectation value of observable \(A\):

\[\langle A \rangle = \langle\psi|A|\psi\rangle\]

Evolution and Dynamics

Unitary evolution:

\[|\psi(t)\rangle = U(t)|\psi(0)\rangle\]

Schrödinger equation:

\[i\hbar\frac{d}{dt}|\psi\rangle = H|\psi\rangle\]

Time evolution operator:

\[U(t) = e^{-iHt/\hbar}\]

Rendering Notes

  • All equations are rendered using MathJax
  • Complex expressions may take a moment to load